7,616 research outputs found

    Connections and Metrics Respecting Standard Purification

    Full text link
    Standard purification interlaces Hermitian and Riemannian metrics on the space of density operators with metrics and connections on the purifying Hilbert-Schmidt space. We discuss connections and metrics which are well adopted to purification, and present a selected set of relations between them. A connection, as well as a metric on state space, can be obtained from a metric on the purification space. We include a condition, with which this correspondence becomes one-to-one. Our methods are borrowed from elementary *-representation and fibre space theory. We lift, as an example, solutions of a von Neumann equation, write down holonomy invariants for cyclic ones, and ``add noise'' to a curve of pure states.Comment: Latex, 27 page

    On the Apparent Orbital Inclination Change of the Extrasolar Transiting Planet TrES-2b

    Full text link
    On June 15, 2009 UT the transit of TrES-2b was detected using the University of Arizona's 1.55 meter Kuiper Telescope with 2.0-2.5 millimag RMS accuracy in the I-band. We find a central transit time of Tc=2454997.76286±0.00035T_c = 2454997.76286 \pm0.00035 HJD, an orbital period of P=2.4706127±0.0000009P = 2.4706127 \pm 0.0000009 days, and an inclination angle of i=83∘.92±0.05i = 83^{\circ}.92 \pm 0.05, which is consistent with our re-fit of the original I-band light curve of O'Donovan et al. (2006) where we find i=83∘.84±0.05i = 83^{\circ}.84 \pm0.05. We calculate an insignificant inclination change of Δi=−0∘.08±0.07\Delta i = -0^{\circ}.08 \pm 0.07 over the last 3 years, and as such, our observations rule out, at the ∼11σ\sim 11 \sigma level, the apparent change of orbital inclination to ipredicted=83∘.35±0.1i_{predicted} = 83^{\circ}.35 \pm0.1 as predicted by Mislis and Schmitt (2009) and Mislis et al. (2010) for our epoch. Moreover, our analysis of a recently published Kepler Space Telescope light curve (Gilliland et al. 2010) for TrES-2b finds an inclination of i=83∘.91±0.03i = 83^{\circ}.91 \pm0.03 for a similar epoch. These Kepler results definitively rule out change in ii as a function of time. Indeed, we detect no significant changes in any of the orbital parameters of TrES-2b.Comment: 19 pages, 1 table, 7 figures. Re-submitted to ApJ, January 14, 201

    A Search for Additional Bodies in the GJ 1132 Planetary System from 21 Ground-based Transits and a 100 Hour Spitzer Campaign

    Get PDF
    We present the results of a search for additional bodies in the GJ 1132 system through two methods: photometric transits and transit timing variations of the known planet. We collected 21 transit observations of GJ 1132b with the MEarth-South array since 2015. We obtained 100 near-continuous hours of observations with the SpitzerSpitzer Space Telescope, including two transits of GJ 1132b and spanning 60\% of the orbital phase of the maximum period at which bodies coplanar with GJ 1132b would pass in front of the star. We exclude transits of additional Mars-sized bodies, such as a second planet or a moon, with a confidence of 99.7\%. When we combine the mass estimate of the star (obtained from its parallax and apparent KsK_s band magnitude) with the stellar density inferred from our high-cadence SpitzerSpitzer light curve (assuming zero eccentricity), we measure the stellar radius of GJ 1132 to be 0.2105−0.0085+0.0102R⊙0.2105^{+0.0102}_{-0.0085} R_\odot, and we refine the radius measurement of GJ 1132b to 1.130±0.056R⊕1.130 \pm 0.056 R_\oplus. Combined with HARPS RV measurements, we determine the density of GJ 1132b to be 6.2±2.06.2 \pm 2.0\ g cm−3^{-3}, with the mass determination dominating this uncertainty. We refine the ephemeris of the system and find no evidence for transit timing variations, which would be expected if there was a second planet near an orbital resonance with GJ 1132b.Comment: 29 pages, 4 Tables, 8 Figures, Submitted to ApJ. Comments welcom

    The rotation and Galactic kinematics of mid M dwarfs in the Solar Neighborhood

    Full text link
    Rotation is a directly-observable stellar property, and drives magnetic field generation and activity through a magnetic dynamo. Main sequence stars with masses below approximately 0.35Msun (mid-to-late M dwarfs) are fully-convective, and are expected to have a different type of dynamo mechanism than solar-type stars. Measurements of their rotation rates provide insights into these mechanisms, but few rotation periods are available for these stars at field ages. Using photometry from the MEarth transit survey, we measure rotation periods for 387 nearby, mid-to-late M dwarfs in the Northern hemisphere, finding periods from 0.1 to 140 days. The typical detected rotator has stable, sinusoidal photometric modulations at a semi-amplitude of 0.5 to 1%. We find no period-amplitude relation for stars below 0.25Msun and an anti-correlation between period and amplitude for higher-mass M dwarfs. We highlight the existence of older, slowly-rotating stars without H{\alpha} emission that nevertheless have strong photometric variability. The Galactic kinematics of our sample is consistent with the local population of G and K dwarfs, and rotators have metallicities characteristic of the Solar Neighborhood. We use the W space velocities and established age-velocity relations to estimate that stars with P<10 days are on average <2 Gyrs, and that those with P>70 days are about 5 Gyrs. The period distribution is mass dependent: as the mass decreases, the slowest rotators at a given mass have longer periods, and the fastest rotators have shorter periods. We find a lack of stars with intermediate rotation periods. [Abridged]Comment: Accepted to ApJ. Machine readable tables and additional figures are available in the published article or on reques

    Harmonic theta series and the kodaira dimension of a6

    Get PDF
    We construct a basis of the space S14(Sp12(ℤ)) of Siegel cusp forms of degree 6 and weight 14 consisting of harmonic theta series. One of these functions has vanishing order 2 at the boundary which implies that the Kodaira dimension of A6 is nonnegative
    • …
    corecore